高一物理必修一知識點總結

來源:趣味百科館 2.68W

一、運動的描述

高一物理必修一知識點總結

1.機械運動:物體在空間中所處位置發生變化,這樣的運動叫做機械運動。

2.運動的特性:普遍性,永恆性,多樣性。

3.質點:在研究物體運動的過程中,如果物體的大小和形狀在所研究問題中可以忽略時,把物體簡化爲一個點,認爲物體的質量都集中在這個點上,這個點稱爲質點。

4.時間與時刻:鐘錶指示的一個讀數對應着某一個瞬間,就是時刻,時刻在時間軸上對應某一點。兩個時刻之間的間隔稱爲時間,時間在時間軸上對應一段。路程和位移:路程表示物體運動軌跡的長度,但不能完全確定物體位置的變化,是標量。從物體運動的起點指向運動的重點的有向線段稱爲位移,是矢量。

二、探究勻變速直線運動規律

1.物體僅在中立的作用下,從靜止開始下落的運動,叫做自由落體運動(理想化模型)。在空氣中影響物體下落快慢的因素是下落過程中空氣阻力的影響,與物體重量無關。

2.伽利略的科學方法:觀察→提出假設→運用邏輯得出結論→通過實驗對推論進行檢驗→對假說進行修正和推廣。

三、研究物體間的相互作用:探究彈力

1.產生形變的物體由於要恢復原狀,會對與它接觸的物體產生力的作用,這種力稱爲彈力。

2.彈力方向垂直於兩物體的接觸面,與引起形變的外力方向相反,與恢復方向相同。繩子彈力沿繩的收縮方向;鉸鏈彈力沿杆方向;硬杆彈力可不沿杆方向。彈力的作用線總是通過兩物體的接觸點並沿其接觸點公共切面的垂直方向。

3.在彈性限度內,彈簧彈力F的大小與彈簧的伸長或縮短量x成正比,即胡克定律。F=kx。

4.上式的k稱爲彈簧的勁度係數(倔強係數),反映了彈簧發生形變的難易程度。

5.彈簧的串、並聯:串聯:1/k=1/k1+1/k2並聯:k=k1+k2。

四、牛頓第二定律

1.物體的加速度跟所受合外力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。

2.a=k·F/m(k=1)→F=ma。

3.k的數值等於使單位質量的物體產生單位加速度時力的大小。國際單位制中k=1。

4.當物體從某種特徵到另一種特徵時,發生質的飛躍的轉折狀態叫做臨界狀態。

5.極限分析法(預測和處理臨界問題):通過恰當地選取某個變化的物理量將其推向極端,從而把臨界現象暴露出來。

6.牛頓第二定律特性:

①矢量性:加速度與合外力任意時刻方向相同。

②瞬時性:加速度與合外力同時產生/變化/消失,力是產生加速度的原因。

③相對性:a是相對於慣性系的,牛頓第二定律只在慣性系中成立。

④獨立性:力的獨立作用原理:不同方向的合力產生不同方向的加速度,彼此不受對方影響。(5)同體性:研究對象的統一性。



高一物理必修一知識點總結

知識構建:

考試的要求:

Ⅰ、對所學知識要知道其含義,並能在有關的問題中識別並直接運用,相當於課程標準中的“瞭解”和“認識”。

Ⅱ、能夠理解所學知識的確切含義以及和其他知識的聯繫,能夠解釋,在實際問題的分析、綜合、推理、和判斷等過程中加以運用,相當於課程標準的“理解”,“應用”。

要求Ⅰ:質點、參考系、座標系。

要求Ⅱ:位移、速度、加速度。

一、質點、參考系和座標系

物體與質點

1、質點:當物體的大小和形狀對所研究的問題而言影響不大或沒有影響時,爲研究問題方便,可忽略其大小和形狀,把物體看做一個有質量的點,這個點叫做質點。

2、物體可以看成質點的條件

條件:①研究的物體上個點的運動情況完全一致。

②物體的線度必須遠遠的大於它通過的距離。

(1)物體的形狀大小以及物體上各部分運動的差異對所研究的問題的影響可以忽略不計時就可以把物體當作質點

(2)平動的物體可以視爲質點

平動的物體上各個點的運動情況都完全相同的物體,這樣,物體上任一點的運動情況與整個物體的運動情況相同,可用一個質點來代替整個物體。

小貼士:質點沒有大小和形狀因爲它僅僅是一個點,但是質點一定有質量,因爲它代表了一個物體,是一個實際物體的理想化的模型。質點的質量就是它所代表的物體的質量。

參考系

1、參考系的定義:描述物體的運動時,用來做參考的另外的物體。

2、對參考系的理解:

(1)物體是運動還是靜止,都是相對於參考系而言的,例如,肩並肩一起走的兩個人,彼此就是相對靜止的,而相對於路邊的建築物,他們卻是運動的。

(2)同一運動選擇不同的參考系,觀察結果可能不同。例如司機開着車行駛在高速公路上以車爲參考系,司機是靜止的,以路面爲參考系,司機是運動的'。

(3)比較物體的運動,應該選擇同一參考系。

(4)參考系可以是運動的物體,也可以是靜止的物體。

小貼士:只有選擇了參考系,說某個物體是運動還是靜止,物體怎樣運動才變得有意義參考系的選擇是研究運動的前提是一項基本技能。

座標系

1、座標系物理意義:在參考系上建立適當的座標系,從而,定量地描述物體的位置及位置變化。

2、座標系分類:

(1)一維座標系(直線座標系):適用於描述質點做直線運動,研究沿一條直線運動的物體時,要沿着運動直線建立直線座標系,即以物體運動所沿的直線爲x軸,在直線上規定原點、正方向和單位長度。例如,汽車在平直公路上行駛,其位置可用離車站(座標原點)的距離(座標)來確定。

(2)二維座標系(平面直角座標系)適用於質點在平面內做曲線運動。例如,運動員推鉛球以鉛球離手時的位置爲座標原點,沿鉛球初速方向建立x軸,豎直向下建立y軸,鉛球的座標爲鉛球離開手後的水平距離和豎直距離。

(3)三維座標系(空間直角座標系):適用於物體在三維空間的運動。例如,籃球在空中的運動。

歸納整理:質點、參考系和座標系是運動學乃至整個力學的最基本最重要的概念。質點是爲了研究問題的方便而引入的理想化模型。質點的運 動是相對的。爲了描述運動而假定爲不動的物體爲參考系。座標系則是參考系中各個點的定量表示。本節重點內容是對質點概念的理解以及研究問題時如何選取參考系。

二、時間和位移

時間和時刻:

①時刻的定義:時刻是指某一瞬時,是時間軸上的一點,相對於位置、瞬時速度、等狀態量,一般說的“2秒末”,“速度2m/s”都是指時刻。

②時間的定義:時間是指兩個時刻之間的間隔,是時間軸上的一段,通常說的“幾秒內”,“第幾秒”都是指的時間。

位移和路程:

①位移的定義:位移表示質點在空間的位置變化,是矢量。位移用又向線段表示,位移的大小等於又向線段的長度,位移的方向由初始位置指向末位置。

②路程的定義:路程是物體在空間運動軌跡的長度,是一個標量。在確定的兩點間路程不是確定的,它與物體的具體運動過程有關。

位移與路程的關係:位移和路程是在一段時間內發生的,是過程量,兩者都和參考系的選取有關係。一般情況下位移的大小並不等於路程的大小。只有當物體做單方向的直線運動是兩者才相等。

三、運動快慢的描述――速度

速度的定義:速度是描述物體運動快慢的物理量。

瞬時速度、平均速率與平均速度:

瞬時速度:運動的物體經過某一位置或是某一時刻的速度,其大小叫速率。

平均速度:物體在某段時間的位移與時間的比值,能夠粗略的描述物體運動的快慢。

平均速度是矢量,平均速度的大小和物體運動的階段有關係。定義式:v=s/t適用於所有的運動形式。

平均速率:物體在某段時間內的路程與時間之比。平均速率是標量。定義式:v=s/t.

注意:平均速度和平均速率往往是不相等的,只有物體做無往復的直線運動時兩者才相等。

歸納整理:物體的運動有快慢之分。不同的物體運動的快慢程度可以用速度來描述。本節重點圍繞與速度相關的平均速度、平均速率、瞬時速度、瞬時速率等概念及相關的公式和應用。

四、實驗:用打點計時器測速度

打點計時器的分類:電磁打點計時器和電火花計時器。

1、電磁打點計時器:電磁打點計時器是一種記錄運動物體在一定時間間隔內位移的儀器。它使用交流電源,工作電壓在10V以下,當電源的頻率爲50Hz時,它每隔0.02S打一個點。

電磁打點計時器的構造如圖所示。

2、電火花計時器:電火花計時器使用交流電源,工作電壓是220V.

電火花計時器的構造如圖所示。主要由脈衝輸出開關,正負脈衝輸出插座、墨粉紙盤、紙盤軸等構成。

3、計時原理:

電火花計時裝置中有一將正弦式交變電流轉化爲脈衝式交變電流的裝置當計時器接通220V交流電源時,按下脈衝輸出開關,計時器發出的脈衝電流經接正極的放電針和接負極的墨粉紙盤軸產生火花放電。利用火花放電在紙帶上打出點跡,當電源的頻率爲50Hz時,它每隔0.02S打一個點。

用打點計時器測量瞬時速度

處理這類問題可採用兩種方法:一是與某點相鄰的點間距離所對應的時間很短。只有0.02S,故只要測出某點與其相鄰點間的距離x,再利用v=x/t求出平均速度,就可用這個平均速度來代表某點的瞬時速度二是利用某點左側的位移與時間(0.02S)的比值求出速度v1,再利用某點右側的一段位移與時間(0.02S)的比值求出速度v2,利用Va=(v1+v2)/2就可得出a點更準確的瞬時速度。

高一物理必修一知識點歸納有哪些?

高一物理必修一知識點歸納如下:

1、當物體的加速度保持大小和方向不變時,物體就做勻變速運動。如自由落體運動,平拋運動等;當物體的加速度方向與初速度方向在同一直線上時,物體就做直線運動。

2、加速度可由速度的變化和時間來計算,但決定加速度的因素是物體所受合力F和物體的質量M。

3、加速度與速度無必然聯繫,加速度很大時,速度可以很小;速度很大時,加速度也可以很小。例如:炮彈在發射的瞬間,速度爲0,加速度非常大;以高速直線勻速行駛的賽車,速度很大,但是由於是勻速行駛,速度的變化量是零,因此它的加速度爲零。

4、加速度爲零時,物體靜止或做勻速直線運動(相對於同一參考系)。任何複雜的運動都可以看作是無數的勻速直線運動和勻加速運動的合成。

5、加速度因參考系(參照物)選取的不同而不同,一般取地面爲參考系。

6、當運動的方向與加速度的方向之間的夾角小於90°時,即做加速運動,加速度是正數;反之則爲負數。

特別地,當運動的方向與加速度的方向之間的夾角恰好等於90°時,物體既不加速也不減速,而是勻速率的運動。如勻速圓周運動。

7、力是物體產生加速度的原因,物體受到外力的作用就產生加速度,或者說力是物體速度變化的原因。說明當物體做加速運動(如自由落體運動)時,加速度爲正值;當物體做減速運動(如豎直上拋運動)時,加速度爲負值。

高一必修一物理知識點總結

高一物理

第一章 力

1. 重力:G = mg

2. 摩擦力:

(1) 滑動摩擦力:f = μFN 即滑動摩擦力跟壓力成正比.

(2) 靜摩擦力:①對一般靜摩擦力的計算應該利用牛頓第二定律,切記不要亂用

f =μFN;②對最大靜摩擦力的計算有公式:f = μFN (注意:這裏的μ與滑動摩擦定律中的μ的區別,但一般情況下,我們認爲是一樣的)

3. 力的合成與分

(1) 力的合成與分解都應遵循平行四邊形定則.

(2) 具體計算就是解三角形,並以直角三角形爲主.

第二章 直線運動

1. 速度公式: vt = v0 + at ①

2. 位移公式: s = v0t + at2 ②

3. 速度位移關係式: - = 2as ③

4. 平均速度公式: = ④

= (v0 + vt) ⑤

= ⑥

5. 位移差公式 : △s = aT2 ⑦

公式說明:(1) 以上公式除④式之外,其它公式只適用於勻變速直線運動.(2)公式⑥指的是在勻變速直線運動中,某一段時間的平均速度之值恰好等於這段時間中間時刻的速度,這樣就在平均速度與速度之間建立了一個聯繫.

6. 對於初速度爲零的勻加速直線運動有下列規律成立:

(1). 1T秒末、2T秒末、3T秒末…nT秒末的速度之比爲: 1 : 2 : 3 : … : n.

(2). 1T秒內、2T秒內、3T秒內…nT秒內的位移之比爲: 12 : 22 : 32 : … : n2.

(3). 第1T秒內、第2T秒內、第3T秒內…第nT秒內的位移之比爲: 1 : 3 : 5 : … : (2 n-1).

(4). 第1T秒內、第2T秒內、第3T秒內…第nT秒內的平均速度之比爲: 1 : 3 : 5 : … : (2 n-1).

第三章 牛頓運動定律

1. 牛頓第二定律: F合= ma

注意: (1)同一性: 公式中的三個量必須是同一個物體的.

(2)同時性: F合與a必須是同一時刻的.

(3)瞬時性: 上一公式反映的是F合與a的瞬時關係.

(4)侷限性: 只成立於慣性系中, 受制於宏觀低速.

2. 整體法與隔離法:

整體法不須考慮整體(系統)內的內力作用, 用此法解題較爲簡單, 用於加速度和外力的計算. 隔離法要考慮內力作用, 一般比較繁瑣, 但在求內力時必須用此法, 在選哪一個物體進行隔離時有講究, 應選取受力較少的進行隔離研究.

3. 超重與失重:

當物體在豎直方向存在加速度時, 便會產生超重與失重現象. 超重與失重的本質是重力的實際大小與表現出的大小不相符所致, 並不是實際重力發生了什麼變化,只是表現出的重力發生了變化.

第四章 物體平衡

1. 物體平衡條件: F合 = 0

2. 處理物體平衡問題常用方法有:

(1). 在物體只受三個力時, 用合成及分解的方法是比較好的. 合成的方法就是將物體所受三個力通過合成轉化成兩個平衡力來處理分解的方法就是將物體所受三個力通過分解轉化成兩對平衡力來處理.

(2). 在物體受四個力(含四個力)以上時, 就應該用正交分解的方法了. 正交分解的方法就是先分解而後再合成以轉化成兩對平衡力來處理的思想.

第五章 勻速圓周運動

1.對勻速圓周運動的描述:

①. 線速度的定義式: v = (s指弧長或路程,不是位移

②. 角速度的定義式: =

③. 線速度與週期的關係:v =

④. 角速度與週期的關係:

⑤. 線速度與角速度的關係:v = r

⑥. 向心加速度:a = 或 a =

2. (1)向心力公式:F = ma = m = m

(2) 向心力就是物體做勻速圓周運動的合外力,在計算向心力時一定要取指向圓心的方向做爲正方向.向心力的作用就是改變運動的方向,不改變運動的快慢.向心力總是不做功的,因此它是不能改變物體動能的,但它能改變物體的動量.

第六章 萬有引力

1.萬有引力存在於萬物之間,大至宇宙中的星體,小到微觀的分子、原子等.但一般物體間的萬有引力非常之小,小到我們無法察覺到它的存在.因此,我們只需要考慮物體與星體或星體與星體之間的萬有引力.

2.萬有引力定律:F = (即兩質點間的萬有引力大小跟這兩個質點的質量的乘積成正比,跟距離的平方成反比.)

說明:① 該定律只適用於質點或均勻球體;② G稱爲萬有引力恆量,G = 6.67×10-11N·m2/kg2.

3. 重力、向心力與萬有引力的關係:

(1). 地球表面上的物體: 重力和向心力是萬有引力的兩個分力(如圖所示, 圖中F示萬有引力, G示重力, F向示向心力), 這裏的向心力源於地球的自轉. 但由於地球自轉的角速度很小, 致使向心力相比萬有引力很小, 因此有下列關係成立:

F≈G>>F向

因此, 重力加速度與向心加速度便是加速度的兩個分量, 同樣有:

a≈g>>a向

切記: 地球表面上的物體所受萬有引力與重力並不是一回事.

(2). 脫離地球表面而成了衛星的物體: 重力、向心力和萬有引力是一回事, 只是不同的說法而已. 這就是爲什麼我們一說到衛星就會馬上寫出下列方程的原因:

= m = m

4. 衛星的線速度、角速度、週期、向心加速度和半徑之間的關係:

(1). v= 即: 半徑越大, 速度越小.

(2). = 即: 半徑越大, 角速度越小.

(3). T =2 即: 半徑越大, 週期越大.

(4). a= 即: 半徑越大, 向心加速度越小.

說明: 對於v、 、T、a和r 這五個量, 只要其中任意一個被確定, 其它四個量就被唯一地確定下來. 以上定量結論不要求記憶, 但必須記住定性結論.

第七章 動量

1. 衝量: I = Ft 衝量是矢量,方向同作用力的方向.

2. 動量: p = mv 動量也是矢量,方向同運動方向.

3. 動量定律: F合 = mvt – mv0

第八章 機械能

1. 功: (1) W = Fs cos (只能用於恆力, 物體做直線運動的情況下)

(2) W = pt (此處的“p”必須是平均功率)

(3) W總 = △Ek (動能定律)

2. 功率: (1) p = W/t (只能用來算平均功率)

(2) p = Fv (既可算平均功率,也可算瞬時功率)

3. 動能: Ek = mv2 動能爲標量.

4. 重力勢能: Ep = mgh 重力勢能也爲標量, 式中的“h”指的是物體重心到參考平面的豎直距離.

5. 動能定理: F合s = mv - mv

6. 機械能守恆定律: mv + mgh1 = mv + mgh2

高一物理必修一知識點詳細歸納

高一物理必修一知識點詳細歸納 1

1、定義:在任意相等的時間內速度的變化都相等的直線運動

2、勻變速直線運動的基本規律

(1)任意兩個連續相等的時間T內的位移之差爲恆量

(2)某段時間內時間中點瞬時速度等於這段時間內的平均速度

3、初速度爲零的勻加速直線運動的比例式

(1)初速度爲零的勻變速直線運動中的幾個重要結論

①1T末,2T末,3T末……瞬時速度之比爲:

v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n

②1T內,2T內,3T內……位移之比爲:

x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n—1)

③第一個T內,第二個T內,第三個T內……第n個T內的位移之比爲:

xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2

④通過連續相等的位移所用時間之比爲:

易錯現象:

1、在一系列的公式中,不注意的v、a正、負。

2、紙帶的處理,是這部分的重點和難點,也是易錯問題。

3、濫用初速度爲零的勻加速直線運動的特殊公式。

高一物理必修一知識點詳細歸納 2

1、自由落體運動:只在重力作用下由靜止開始的下落運動,因爲忽略了空氣的阻力,所以是一種理想的運動,是初速度爲零、加速度爲g的勻加速直線運動。

2、自由落體運動規律

3、豎直上拋運動:

可以看作是初速度爲v0,加速度方向與v0方向相反,大小等於的g的勻減速直線運動,可以把它分爲向上和向下兩個過程來處理。

(2)豎直上拋運動的對稱性

物體以初速度v0豎直上拋,A、B爲途中的任意兩點,C爲點,則:

(1)時間對稱性

物體上升過程中從A→C所用時間tAC和下降過程中從C→A所用時間tCA相等,同理tAB=tBA。

(2)速度對稱性

物體上升過程經過A點的速度與下降過程經過A點的速度大小相等。

[關鍵一點]

在豎直上拋運動中,當物體經過拋出點上方某一位置時,可能處於上升階段,也可能處於下降階段,因此這類問題可能造成時間多解或者速度多解。

易錯現象

1、忽略自由落體運動必須同時具備僅受重力和初速度爲零

2、忽略豎直上拋運動中的多解

3、小球或杆過某一位置或圓筒的問題

高一物理必修一知識點整理:運動的圖象運動的相遇和追及問題

1、圖象:

圖像在中學物理中佔有舉足輕重的地位,其優點是可以形象直觀地反映物理量間的函數關係。位移和速度都是時間的函數,在描述運動規律時,常用x—t圖象和v—t圖象。

(1)x—t圖象

①物理意義:反映了做直線運動的物體的位移隨時間變化的規律。②表示物體處於靜止狀態

②圖線斜率的意義

①圖線上某點切線的斜率的大小表示物體速度的大小。

②圖線上某點切線的斜率的正負表示物體方向。

③兩種特殊的x—t圖象

(1)勻速直線運動的x—t圖象是一條過原點的直線。

(2)若x—t圖象是一條平行於時間軸的直線,則表示物體處

於靜止狀態

(2)v—t圖象

①物理意義:反映了做直線運動的物體的速度隨時間變化的規律。

②圖線斜率的意義

a圖線上某點切線的斜率的大小表示物體運動的加速度的大小。

b圖線上某點切線的斜率的正負表示加速度的方向。

③圖象與座標軸圍成的“面積”的意義

a圖象與座標軸圍成的面積的數值表示相應時間內的位移的大小。

b若此面積在時間軸的上方,表示這段時間內的位移方向爲正方向;若此面積在時間軸的下方,表示這段時間內的位移方向爲負方向。

③常見的兩種圖象形式

(1)勻速直線運動的v—t圖象是與橫軸平行的直線。

(2)勻變速直線運動的v—t圖象是一條傾斜的直線。

2、相遇和追及問題:

這類問題的關鍵是兩物體在運動過程中,速度關係和位移關係,要注意尋找問題中隱含的臨界條件。

1、混淆x—t圖象和v—t圖象,不能區分它們的物理意義

2、不能正確計算圖線的斜率、面積

3、在處理汽車剎車、飛機降落等實際問題時注意,汽車、飛機停止後不會後退

高一物理必修一知識點詳細歸納 3

一、探究形變與彈力的關係

彈性形變(撤去使物體發生形變的外力後能恢復原來形狀的物體的形變)範性形變(撤去使物體發生形變的外力後不能恢復原來形狀的物體的形變)

彈性限度:若物體形變過大,超過一定限度,撤去外力後,無法恢復原來的形狀,這個限度叫彈性限度。

二、探究摩擦力

滑動摩擦力:一個物體在另一個物體表面上相當於另一個物體滑動的時候,要受到另一個物體阻礙它相對滑動的力,這種力叫做滑動摩擦力。

說明:摩擦力的產生是由於物體表面不光滑造成的。

三、力的合成與分解

(1)若處於平衡狀態的物體僅受兩個力作用,這兩個力一定大小相等、方向相反、作用在一條直線上,即二力平衡

(2)若處於平衡狀態的物體受三個力作用,則這三個力中的任意兩個力的合力一定與另一個力大小相等、方向相反、作用在一條直線上

(3)若處於平衡狀態的物體受到三個或三個以上的力的作用,則宜用正交分解法處理,此時的平衡方程可寫成

①確定研究對象;

②分析受力情況;

③建立適當座標;

④列出平衡方程

四、共點力的平衡條件

1、共點力:物體受到的各力的作用線或作用線的延長線能相交於一點的力

2、平衡狀態:在共點力的作用下,物體保持靜止或勻速直線運動的狀態。

說明:這裏的靜止需要二個條件,一是物體受到的合外力爲零,二是物體的速度爲零,僅速度爲零時物體不一定處於靜止狀態,如物體做豎直上拋運動達到點時刻,物體速度爲零,但物體不是處於靜止狀態,因爲物體受到的合外力不爲零。

3、共點力作用下物體的平衡條件:合力爲零,即0

說明;

①三力匯交原理:當物體受到三個非平行的共點力作用而平衡時,這三個力必交於一點;

②物體受到N個共點力作用而處於平衡狀態時,取出其中的一個力,則這個力必與剩下的(N—1)個力的合力等大反向。

③若採用正交分解法求平衡問題,則其平衡條件爲:FX合=0,FY合=0;

④有固定轉動軸的物體的平衡條件

五、作用力與反作用力

學過物理學的人都會知道牛頓第三定律,此定律主要說明了作用力和反作用的關係。在對一個物體用力的時候同時會受到另一個物體的反作用力,這對力大小相等,方向相反,並且保持在一條直線上。

高一物理必修一知識點詳細歸納 4

自由落體運動的定義

從靜止出發,只在重力作用下而降落的運動模式,叫自由落體運動。

自由落體運動是最典型的勻變速直線運動是初速度爲零,加速度爲g的勻加速直線運動。

地球表面附近的上空可看作是恆定的重力場。如不考慮大氣阻力,在該區域內的自由落體運動的方向是豎直向下的(並非指向地心),加速度爲重力加速度g的勻加速直線運動。

只有在赤道上或者兩極上,自由落體運動的方向(也就是重力的方向)纔是指向地球中心的。

g≈9.8m/s^2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。

自由落體運動的基本公式

(1)Vt=gt

(2)h=1/2gt^2

(3)Vt^2=2gh

這裏的h與x同樣都是指位移,一般在自由落體中用h表示數值方向的位移量。

自由落體運動的研究先驅者

對自由落體最先研究的是古希臘的科學家亞里士多德,他提出:物體下落的快慢是由物體本身的重量決定的,物體越重,下落得越快反之,則下落得越慢。

亞里士多德,前384年4月23日-前322年3月7日,古希臘哲學家,柏拉圖的學生、亞歷山大大帝的老師。

他的著作包含許多學科,包括了物理學、形而上學、詩歌(包括戲劇)、生物學、動物學、邏輯學、政治、政府、以及_學。和柏拉圖、蘇格拉底(柏拉圖的老師)一起被譽爲西方哲學的奠基者。亞里士多德的著作是西方哲學的第一個廣泛系統,包含道德、美學、邏輯和科學、政治和玄學。

伽利略是意大利天文學家,也是世界物理學家。他於1564年誕生在意大利北部的'比薩市,1642年1月8日去世,終年78歲。他畢生致力於科學事業,不僅爲我們留下了時鐘、望遠鏡和衆多的科學專著,而且還爲破除宗教迷信、科學偏見作出了傑出的貢獻。

伽利略在1638年寫的《兩種新科學的對話》一書中指出:根據亞里士多德的論斷,一塊大石頭的下落速度要比一塊小石頭的下落速度大。假定大石頭的下落速度爲8,小石頭的下落速度爲4,當我們把兩塊石頭拴在一起時,下落快的會被下落慢的拖着而減慢,下落慢的會被下落快的拖着而加快,結果整個系統的下落速度應該小於8。但是兩塊石頭拴在一起,加起來比大石頭還要重,因此重物體比輕物體的下落速度要小。這樣,就從重物體比輕物體下落得快的假設,推出了重物體比輕物體下落得慢的結論。亞里士多德的理論陷入了自相矛盾的境地。伽利略由此推斷重物體不會比輕物體下落得快。伽利略的假設推導法,對物理思維方法起到了非常重要的作用。

伽利略曾在的比薩斜塔做了的自由落體試驗,讓兩個體積相同,質量不同的球從塔頂同時下落,結果兩球同時落地,以實踐駁倒了亞里士多德的結論。但是後來經過歷史的嚴格考證,伽利略並沒有在比薩斜塔做實驗,人們卻還是把比薩斜塔當作對伽利略的紀念碑。

高一物理必修一知識點詳細歸納 5

1、定義:把某個特定的物體在某個特定的物理環境中所受到的力一個不漏,一個不重地找出來,並畫出定性的受力示意圖。對物體進行正確地受力分析,是解決好力學問題的關鍵。

2、相對合理的順序:先找場力(電場力、磁場力、重力),再找接觸力(彈力、摩擦力),最後分析其它力。

3、爲了在受力分析時不多分析力,也不漏力,一般情況下按下面的步驟進行:

(1)確定研究對象—可以是某個物體也可以是整體。

(2)按順序畫力

①先畫重力:作用點畫在物體的重心,方向豎直向下。

②次畫已知力

③再畫接觸力—(彈力和摩擦力):看研究對象跟周圍其他物體有幾個接觸點(面),先對某個接觸點(面)分析,若有擠壓,則畫出彈力,若還有相對運動或相對運動的趨勢,則再畫出摩擦力。分析完一個接觸點(面)後,再依次分析其他的接觸點(面)。

④再畫其他場力:看是否有電、磁場力作用,如有則畫出。

高一物理必修一知識點詳細歸納 6

1、功

(1)功的概念:一個物體受到力的作用,如果在力的方向上發生一段位移,我們就說這個力對物體做了功。力和在力的方向上發生位移,是做功的兩個不可缺少的因素。

(2)功的計算式:力對物體所做的功的大小,等於力的大小、位移的大小、力和位移的夾角的餘弦三者的乘積:W=Fscosα。

(3)功的單位:在國際單位制中,功的單位是焦耳,簡稱焦,符號是J。1J就是1N的力使物體在力的方向上發生lm位移所做的功。

2、功的計算

⑴恆力的功:根據公式W=Fscosα,當00≤a<900時,cosα>0,W>0,表示力對物體做正功;當α=900時,cosα=0,W=0,表示力的方向與位移的方向垂直,力不做功;當900<α<1800時,cosα<0,W<0,表示力對物體做負功,或者說物體克服力做了功。

(2)合外力的功:等於各個力對物體做功的代數和,即:W合=W1+W2+W3+……

(3)用動能定理W=ΔEk或功能關係求功。功是能量轉化的量度。做功過程一定伴隨能量的轉化,並且做多少功就有多少能量發生轉化。

3、功和衝量的比較

(1)功和衝量都是過程量,功表示力在空間上的積累效果,衝量表示力在時間上的積累效果。

(2)功是標量,其正、負表示是動力對物體做功還是物體克服阻力做功。衝量是矢量,其正、負號表示方向,計算衝量時要先規定正方向。

(3)做功的多少由力的大小、位移的大小及力和位移的夾角三個因素決定。衝量的大小隻由力的大小和時間兩個因素決定。力作用在物體上一段時間,力的衝量不爲零,但力對物體做的功可能爲零。

4、一對作用力和反作用力做功的特點

⑴一對作用力和反作用力在同一段時間內做的總功可能爲正、可能爲負、也可能爲零。

⑵一對互爲作用反作用的摩擦力做的總功可能爲零(靜摩擦力)、可能爲負(滑動摩擦力),但不可能爲正。

熱門標籤