什麼是傅里葉級數

來源:趣味百科館 2.21W

一種特殊的三角級數。形如

什麼是傅里葉級數
 (1)

的級數,其中αn(n=0,1,2,…)和bn(n=1,2,…)是與x無關的實數,稱爲三角級數。特別,當(1)中的係數αnbn可通過某個函數ƒ(x)用下列公式表示時,級數(1)稱爲ƒ的傅里葉級數:

什麼是傅里葉級數 第2張
 (2)

式中ƒ是週期2π的可積函數,即ƒl1(-ππ)。此時,由公式(2)得到的係數αnbn稱爲ƒ的傅里葉係數。ƒ的傅里葉級數記爲

什麼是傅里葉級數 第3張
。 (3)

當然,ƒ的傅里葉級數並不一定收斂;即使收斂,也不一定收斂於ƒ(x)。假如已知三角級數一致收斂於ƒ(x),即

什麼是傅里葉級數 第4張
,那麼雙方都乘以cosnx或sinnx後,在(-ππ)上可以逐項積分,由三角函數系的正交性,即得公式(2)。所以,如果三角級數(1)一致收斂於ƒ(x),級數(1)必爲ƒ的傅里葉級數。

問題往往是,給定函數ƒ,需要把它表示成三角級數(1)。J.-B.-J.傅里葉的建議是,利用公式(2),求出ƒ的傅里葉係數αnbn,就得到傅里葉級數(3)。可以證明,只要ƒ滿足一定的條件,那麼ƒ的傅里葉級數σ[ƒ]收斂於ƒ

傅里葉級數的收斂判別法

常用的判別法有:

(1)迪尼判別法 對固定的點x,如有數s,使得函數φx(u)/u=(ƒ(x+u)+ƒ(x-u)-2s)/u在[-ππ]上勒貝格可積,則σ[ƒ]在點x收斂於s。由此可知,當ƒ在點x連續,並滿足李普希茨條件,即

什麼是傅里葉級數 第5張
(0<uh),那麼σ[ƒ]在x收斂於ƒ(x),其中Mhα均爲正數,且α≤1。另外,當ƒ(x)具有連續的導函數ƒ┡(x)時,σ[ƒ]一致收斂於ƒ(x)。

(2)狄利克雷-若爾當判別法 假設函數ƒ在含有點x的某區間,例如[x-hx+h]上分段單調,則ƒ的傅里葉級數在點x收斂於(ƒ(x+0)+ƒ(x-0))/2。

上面提到的收斂判別法,對函數所提的要求,都是充分條件,並非必要的。關於收斂性判別法,還有幾種。值得注意的是,至今還沒有收斂的充分且必要的條件。

傅里葉級數的複數形式

三角級數(1)還可用指數函數來表示。事實上,

什麼是傅里葉級數 第6張
/2,
什麼是傅里葉級數 第7張
(叿n表示сn的共軛複數),那麼級數(1)可寫成複數形式

什麼是傅里葉級數 第8張
,  (4)

這裏,(4)的部分和Sn理解爲

什麼是傅里葉級數 第9張
。假如(1)是ƒ的傅里葉級數,那麼它的複數形式也是(4),但係數

什麼是傅里葉級數 第10張
。 (5)

上式表達的сn稱爲ƒ的復傅里葉係數,又稱ƒ的傅里葉係數的復形式。

傅里葉係數的重要性質

列舉下面兩條:

(1)若ƒ(xl(-ππ),則ƒ的傅里葉係數αnbn(或сn),當n→∞時趨於0,稱爲黎曼-勒貝格定理。

(2)若ƒ(xl2(-ππ),則有

什麼是傅里葉級數 第11張

這個等式稱爲帕舍伐爾等式;反之假如{сk}是一列雙向的數列,滿足條件

什麼是傅里葉級數 第12張
,那麼必存在惟一的函數ƒ(xl2(-ππ),它的傅里葉係數等於{сk}(k=0,±1,±2,…)。這個逆命題稱爲里斯-費希爾定理。

三角級數與單位圓內解析函數的關係

z=eix(0≤x<2π)是複平面單位圓周上的點,於是級數

什麼是傅里葉級數 第13張
 (6)

的實部就是三角級數(1),虛部

什麼是傅里葉級數 第14張
 (7)

稱爲三角級數(1)的共軛級數。假如(6)中的z表示單位圓內的點,即z=reix(0≤r<1),那麼(6)就是復變數z=reix的冪級數,當它收斂時,其和函數是單位圓內的解析函數。所以三角級數(1)可以看做單位圓內解析函數邊界值的實部。

多元三角級數與多元傅里葉級數

什麼是傅里葉級數 第15張
m 維歐氏空間Rm的點,級數

什麼是傅里葉級數 第16張
 (8)

稱爲m元三角級數,其中

什麼是傅里葉級數 第17張
,而n1,n2,…,nm爲整數。假如ƒ(x)=ƒ(x1,x2,…,xm)關於每個變量xi(1≤im)都是週期爲2π的周期函數,且在立方體

Q:-π ≤xj≤π (j=1,2,…,m) (9)

上,ƒ是勒貝格可積的。類似於(5),如果(8)中係數

什麼是傅里葉級數 第18張

什麼是傅里葉級數 第19張

那麼稱(8)爲ƒ的傅里葉級數,並記爲

什麼是傅里葉級數 第20張

多元傅里葉係數也有類似於一元傅里葉係數的許多性質,但多元三角級數與多元傅里葉級數的許多問題,卻遠較一元複雜。在中國,程民德最早系統研究多元三角級數與多元傅里葉級數。他首先證明多元三角級數球形和的惟一性定理,並揭示了多元傅里葉級數的里斯-博赫納球形平均的許多特性。

傅里葉級數在數學物理以及工程中都具有重要的應用。

參考書目

A. Zygmund,Trigonometric Series,Vol. 1~2, Cambridge s,Cambridge,1959.

熱門標籤